```
## warpbreaks one-way decompositions
data(warpbreaks)
attach(warpbreaks)
disco(breaks, factors=wool, R=99)
## When index=2 for univariate data, we get ANOVA decomposition
disco(breaks, factors=tension, index=2.0, R=99)
aov(breaks ~ tension)
## Multivariate response
## Example on producing plastic film from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,
6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,
9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,
2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
Y <- cbind(tear, gloss, opacity)
rate <- factor(gl(2,10), labels=c("Low", "High"))
## test for equal distributions by rate
disco(Y, factors=rate, R=99)
disco(Y, factors=rate, R=99, method="discoB")
## Just extract the decomposition table
disco(Y, factors=rate)$stats
## Compare eqdist.e methods for rate
## disco between stat is half of original when sample sizes equal
eqdist.e(Y, sizes=c(10, 10), method="original")
eqdist.e(Y, sizes=c(10, 10), method="discoB")
## The between-sample distance component
disco.between(Y, factors=rate)
```

Run the code above in your browser using DataLab