cv.enspls(x, y, nfolds = 5L, verbose = TRUE, ...)
5
.
Note that this is the CV folds for the ensemble sparse PLS model,
not the individual sparse PLS models. To control the CV folds for
single sparse PLS models, please use the argument cvfolds
.enspls.fit
.ypred
- a matrix containing two columns: real y and predicted y
residual
- cross validation result (y.pred - y.real)
RMSE
- RMSE
MAE
- MAE
Rsquare
- Rsquare
enspls.fit
for ensemble sparse
partial least squares regressions.
# This example takes one minute to run
## Not run:
# data("logd1k")
# x = logd1k$x
# y = logd1k$y
#
# set.seed(42)
# cvfit = cv.enspls(x, y, reptimes = 10)
# print(cvfit)
# plot(cvfit)## End(Not run)
Run the code above in your browser using DataLab