Learn R Programming

enpls (version 5.6)

enspls.fs: Ensemble Sparse Partial Least Squares for Measuring Feature Importance

Description

Measuring feature importance with ensemble sparse partial least squares.

Usage

enspls.fs(x, y, maxcomp = 5L, cvfolds = 5L, alpha = seq(0.2, 0.8, 0.2), reptimes = 500L, method = c("mc", "boot"), ratio = 0.8, parallel = 1L)

Arguments

x
Predictor matrix.
y
Response vector.
maxcomp
Maximum number of components included within each model. If not specified, will use 5 by default.
cvfolds
Number of cross-validation folds used in each model for automatic parameter selection, default is 5.
alpha
Parameter (grid) controlling sparsity of the model. If not specified, default is seq(0.2, 0.8, 0.2).
reptimes
Number of models to build with Monte-Carlo resampling or bootstrapping.
method
Resampling method. "mc" (Monte-Carlo resampling) or "boot" (bootstrapping). Default is "mc".
ratio
Sampling ratio used when method = "mc".
parallel
Integer. Number of CPU cores to use. Default is 1 (not parallelized).

Value

A list containing two components:
  • variable.importance - a vector of variable importance
  • coefficient.matrix - original coefficient matrix

See Also

See enspls.od for outlier detection with ensemble sparse partial least squares regressions. See enspls.fit for fitting ensemble sparse partial least squares regression models.

Examples

Run this code
data("logd1k")
x = logd1k$x
y = logd1k$y

set.seed(42)
fs = enspls.fs(x, y, reptimes = 5, maxcomp = 2)
print(fs, nvar = 10)
plot(fs, nvar = 10)
plot(fs, type = 'boxplot', limits = c(0.05, 0.95), nvar = 10)

Run the code above in your browser using DataLab