Learn R Programming

enpls

enpls offers an algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.

Installation

You can install enpls from CRAN:

install.packages("enpls")

Or try the development version on GitHub:

remotes::install_github("nanxstats/enpls")

See vignette("enpls") for a quick-start guide.

Gallery

Feature importance

Outlier detection

Model applicability domain evaluation and ensemble predictive modeling

Contribute

To contribute to this project, please take a look at the Contributing Guidelines first. Please note that the RECA project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('enpls')

Monthly Downloads

311

Version

6.1.1

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Nan Xiao

Last Published

July 29th, 2025

Functions in enpls (6.1.1)

enspls.fit

Ensemble Sparse Partial Least Squares Regression
enspls.ad.core.fit

core fitting function for enspls.ad
enspls.ad

Ensemble Sparse Partial Least Squares for Model Applicability Domain Evaluation
enpls.rmse

Root Mean Squared Error (RMSE)
plot.enspls.fs

Plot enspls.fs object
enspls.fs.core

core function for enspls.fs
enpls.fs.core

core function for enpls.fs
enpls.od.core

core function for enpls.od
plot.enpls.fs

Plot enpls.fs object
enpls.mae

Mean Absolute Error (MAE)
predict.enspls.fit

Make Predictions from a Fitted Sparse Ensemble Partial Least Squares Model
predict.enpls.fit

Make Predictions from a Fitted Ensemble Partial Least Squares Model
plot.enpls.ad

Plot enpls.ad object
plot.enspls.od

Plot enspls.od object
print.enspls.ad

Print enspls.ad Object
print.enspls.fit

Print Fitted Ensemble Sparse Partial Least Squares Object
logd1k

logD7.4 Data for 1,000 Compounds
enspls.od.core

core function for enspls.od
plot.cv.enpls

Plot cv.enpls object
plot.enpls.od

Plot enpls.od object
plot.cv.enspls

Plot cv.enspls object
print.enpls.od

Print enpls.od Object
enspls.fs

Ensemble Sparse Partial Least Squares for Measuring Feature Importance
print.cv.enpls

Print cv.enpls Object
enspls.fit.core

core function for enspls.fit
print.enpls.fit

Print Fitted Ensemble Partial Least Squares Object
enspls.od

Ensemble Sparse Partial Least Squares for Outlier Detection
plot.enspls.ad

Plot enspls.ad object
print.enpls.fs

Print enpls.fs Object
print.cv.enspls

Print cv.enspls Object
print.enpls.ad

Print enpls.ad Object
print.enspls.od

Print enspls.od Object
rgb2alpha

Add transparency level to hex colors
print.enspls.fs

Print enspls.fs Object
alkanes

Methylalkanes Retention Index Dataset
enpls.ad.core.pred

core prediction function for enpls.ad
enpls.fit

Ensemble Partial Least Squares Regression
enpls.ad

Ensemble Partial Least Squares for Model Applicability Domain Evaluation
cv.enpls

Cross Validation for Ensemble Partial Least Squares Regression
cv.enspls

Cross Validation for Ensemble Sparse Partial Least Squares Regression
enpls.fs

Ensemble Partial Least Squares for Measuring Feature Importance
enpls.fit.core

core function for enpls.fit
enpls.ad.core.fit

core fitting function for enpls.ad
enpls-package

enpls: Ensemble Partial Least Squares Regression
enpls.od

Ensemble Partial Least Squares for Outlier Detection
enspls.ad.core.pred

core prediction function for enspls.ad
enpls.rmsle

Root Mean Squared Logarithmic Error (RMSLE)