fitBMA( ensembleData, control = NULL, model = NULL,
exchangeable = NULL, popData = NULL)
ensembleData
object with ensemble forecasts, observations
and dates. This is the training set for the model.controlBMAnormal()
for normal models
and controlBMAgamma0()
for gamma models with a point mass at 0."normal"
for temperature or pressure data,
and "gamma0"
for precipitation data.control
.transformation
(if any).
Used for quantile forecasts and verification.
This is input as part of control
.fitBMA
objects (the output of fitBMA
)
include: cdfBMA
, quantileForecastBMA
, and
bmaModelParameters
.J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209--3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter,
ensembleBMA
: An R
Package for Probabilistic Forecasting
using Ensembles and Bayesian Model Averaging,
Technical Report No. 516, Department of Statistics, University of
Washington, August 2007.
ensembleData
,
ensembleBMA
,
fitBMAgamma0
,
fitBMAnormal
,
cdfBMA
,
quantileForecastBMA
,
bmaModelParameters
,
controlBMAnormal
,
controlBMAgamma0
data(slpTest)
memberLabels <- c("AVN","GEM","ETA","NGM","NOGAPS")
slpTestData <- ensembleData(forecasts = slpTest[ ,memberLabels],
observations = slpTest$obs, dates = slpTest$date)
DATE <- sort(unique(slpTestData$dates))[27]
trainDat <- trainingData( slpTestData, date=DATE,
trainingRule=list(length=25,lag=2))
slpFitA <- fitBMA(trainDat, model = "normal")
D <- as.numeric(slpTestData$dates) <= 25
slpFitB <- fitBMA(slpTestData[D, ], model = "normal")
Run the code above in your browser using DataLab