
Last chance! 50% off unlimited learning
Sale ends in
Produces contour, image, or perspective plot of a forecast using loess prediction on a grid.
plotProbcast( forecast, longitude, latitude, nGrid = 65,
type = c("image", "contour", "persp"), ...,
interpolate = FALSE, span = 0.75, maps = NULL)
An image, contour, or perspective plot of the forecast.
Numeric vector of forecasts.
Numeric vector giving the longitude of each forecast location.
Numeric vector giving the latitude of each forecast location.
Number of grid points for loess
interpolation.
(Binning and interpolation are done on an nGrid
by nGrid
grid).
A character string indicating the desired plot type.
Should be one of either "contour"
, "image"
, or
"persp"
.
Additional arguments to be passed to the plotting method.
A logical variable indicating whether or not a loess
fit should be used to interpolate the data to points on
a grid. The default is to determine grid values by binning,
rather than interpolation.
Smoothing parameter for loess
(used only when
interpolate = TRUE
).
The default value is 0.75
, which is
the default for loess
.
A logical value indicating whether or not to include
a map outline. The default is to include an outline
if type = "image"
and the fields
library
is loaded.
If the fields
library is loaded, a legend (and optionally
a map outline) will be included in image plots.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter,
ensembleBMA
: An R
Package for Probabilistic Forecasting
using Ensembles and Bayesian Model Averaging,
Technical Report No. 516R, Department of Statistics, University of
Washington, 2007 (revised 2010).
quantileForecast
data(srft)
labels <- c("CMCG","ETA","GASP","GFS","JMA","NGPS","TCWB","UKMO")
srftData <- ensembleData( forecasts = srft[,labels],
dates = srft$date, observations = srft$obs,
latitude = srft$lat, longitude = srft$lon,
forecastHour = 48, initializationTime = "00")
if (FALSE) # R check
bmaFit <- ensembleBMA( srftData, date = "2004012900", trainingDays = 25,
model = "normal")
bmaForc <- quantileForecast( bmaFit, srftData, date = "2004012900",
quantiles = c(.1, .5, .9))
obs <- srftData$date == "2004012900"
lat <- srftData$latitude[obs]
lon <- srftData$longitude[obs]
plotProbcast( bmaForc[,"0.5"], lat, lon,
type = "contour", interpolate = TRUE)
title("Median Forecast")
plotProbcast( srftData$obs[obs], lat, lon,
type = "contour", interpolate = TRUE)
title("Observed Surface Temperature")
data(srftGrid)
memberLabels <- c("CMCG","ETA","GASP","GFS","JMA","NGPS","TCWB","UKMO")
srftGridData <- ensembleData(forecasts = srftGrid[,memberLabels],
latitude = srftGrid[,"latitude"], longitude = srftGrid[,"longitude"],
forecastHour = 48, initializationTime = "00")
gridForc <- quantileForecast( bmaFit, srftGridData,
date = "2004021400", quantiles = c( .1, .5, .9))
library(fields)
plotProbcast(gridForc[,"0.5"],lon=srftGridData$lon,
lat=srftGridData$lat,type="image",col=rev(rainbow(100,start=0,end=0.85)))
title("Median Grid Forecast for Surface Temperature", cex = 0.5)
probFreeze <- cdf( bmaFit, srftGridData, date = "2004021400",
value = 273.15)
plotProbcast(probFreeze, lon=srftGridData$lon, lat=srftGridData$lat,
type="image",col=gray((32:0)/32))
title("Probability of Freezing", cex = 0.5)
Run the code above in your browser using DataLab