Learn R Programming

ensembleEN

This package provides functions for computing the ensembles of regularized linear regression estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2017).


Installation

You can install the stable version on R CRAN.

install.packages('ensembleEN', dependencies = TRUE)

You can install the development version from GitHub

library(devtools)
devtools::install_github("esmucler/ensembleEN")

Usage

# A small example
library(MASS)
library(ensembleEN)
set.seed(1)
beta <- c(rep(5, 5), rep(0, 45))
Sigma <- matrix(0.5, 50, 50)
diag(Sigma) <- 1
x <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
y <- x %*% beta + rnorm(50)
fit <- cv.ensembleEN(x, y, num_models=10) # Use 10 models
coefs <- predict(fit, type="coefficients")

License

This package is free and open source software, licensed under GPL (>= 2).

Copy Link

Version

Install

install.packages('ensembleEN')

Monthly Downloads

12

Version

1.1.2

License

GPL (>= 2)

Maintainer

Ezequiel Smucler

Last Published

February 10th, 2018

Functions in ensembleEN (1.1.2)

coef.cv.ensembleEN

Extract coefficients from a cv.ensembleEN object.
predict.cv.ensembleEN

Make predictions from a cv.ensembleEN object.
cv.ensembleEN

Ensembles of elastic net algorithm with a sparsity and diversity penalty.