targetbootcanon(model, nboot, index, u, code, families, quiet = FALSE, m = 100)
families
list
labels each arrow of the aster graphical structure.m
iterations.u
. When one is using a partial envelope
then this function constructs envelope estimators of $\upsilon$ where
we write $\tau$ = $(\gamma^T,\upsilon^T)^T$ and $\upsilon$
corresponds to aster model parameters of interest. In the sample, the
1D algorithm uses $M = \widehat{\Sigma}_{\upsilon,\upsilon}^{-1}$ and
$U = \hat{\beta}\hat{\beta}^T$ as inputs where $\widehat{\Sigma}_{\upsilon,\upsilon}^{-1}$
is the part of $\hat{\Sigma}^{-1}$ corresponding to our parameters
of interest. When all of the components of $\tau$ are components of
interest, then we write $\widehat{\Sigma}_{\upsilon,\upsilon}^{-1} = \widehat{\Sigma}^{-1}$.
The algorithm is as follows:
A parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE is also conducted by this function.
Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational and Graphical Statistics, Published online. \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1080/10618600.2015.1029577http://doi.org/10.1080/10618600.2015.1029577doi:\ifelse{latex}{\out{~}}{ }latex~ 10.1080/10618600.2015.1029577 .
Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.
## Not run: set.seed(13)
# library(envlpaster)
# library(aster2)
# data(generateddata)
# m1 <- aster(resp ~ 0 + varb + mass + timing,
# fam = fam, pred = pred, varvar = varb, idvar = id,
# root = root, data = redata)
# target <- c(9:10)
# nboot <- 2000; timer <- nboot/2
# bar <- targetbootcanon(m1, nboot = nboot, index = target,
# u = 1, m = timer)
# bar## End(Not run)
Run the code above in your browser using DataLab