# NOT RUN {
#######################################################################
#Example 1: Different initial population abundances.
#######################################################################
increasing_linear(y_ini = c(N = 100, N = 200, N = 400),
temp_ini = rep(26,3),
temp_cmin = rep(18,3),
temp_cmax = rep(40,3),
ro = rep(0.7,3),
m = rep(0.15,3),
lambda = rep(0.00005,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 2: Different thermal tolerance ranges.
#######################################################################
temp_cmin3 <- 18
temp_cmin2 <- 10/9*temp_cmin3
temp_cmin1 <- 10/9*temp_cmin2
temp_cmax1 <- 32.4
temp_cmax2 <- 10/9*temp_cmax1
temp_cmax3 <- 10/9*temp_cmax2
increasing_linear(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(26,3),
temp_cmin = c(temp_cmin1,temp_cmin2,temp_cmin3),
temp_cmax = c(temp_cmax1,temp_cmax2,temp_cmax3),
ro = rep(0.7,3),
m = rep(0.15,3),
lambda = rep(0.00005,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
# }
# NOT RUN {
#######################################################################
#Example 3: Different relationships between initial environmental
# temperature and optimum temperature.
#######################################################################
temp_cmin <- 18
temp_cmax <- 40
# Temperature at which performance is at its maximum value.
temp_op <- (temp_cmax+temp_cmin)/3+sqrt(((temp_cmax+temp_cmin)/3)^2-
(temp_cmax*temp_cmin)/3)
temp_ini1 <- (temp_cmin+temp_op)/2
temp_ini2 <- temp_op
temp_ini3 <- (temp_op+temp_cmax)/2
increasing_linear(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = c(temp_ini1,temp_ini2,temp_ini3),
temp_cmin = rep(temp_cmin,3),
temp_cmax = rep(temp_cmax,3),
ro = rep(0.7,3),
m = rep(0.15,3),
lambda = rep(0.00005,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 4: Different marginal losses by a non-thermodependent
# component of intraspecific competition.
#######################################################################
lambda3 <- 0.01
lambda2 <- 1/2*lambda3
lambda1 <- 1/2*lambda2
increasing_linear(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(26,3),
temp_cmin = rep(18,3),
temp_cmax = rep(36,3),
ro = rep(0.7,3),
m = rep(0.15,3),
lambda = c(lambda1,lambda2,lambda3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
# }
Run the code above in your browser using DataLab