# NOT RUN {
model0 <- glm(case ~ induced + spontaneous, family=binomial, data=infert)
summary(model0)
logistic.display(model0)
data(ANCdata)
glm1 <- glm(death ~ anc + clinic, family=binomial, data=ANCdata)
logistic.display(glm1)
logistic.display(glm1, simplified=TRUE)
library(MASS) # necessary for negative binomial regression
data(DHF99); .data <- DHF99
attach(.data)
model.poisson <- glm(containers ~ education + viltype,
family=poisson, data=DHF99)
model.nb <- glm.nb(containers ~ education + viltype,
data=.data)
idr.display(model.poisson) -> poiss
print(poiss) # or print.display(poiss) or poiss
idr.display(model.nb)
detach(.data)
data(VC1to6)
.data <- VC1to6
.data$fsmoke <- factor(.data$smoking)
levels(.data$fsmoke) <- list("no"=0, "yes"=1)
clr1 <- clogit(case ~ alcohol + fsmoke + strata(matset), data=.data)
clogistic.display(clr1)
rm(list=ls())
data(BP)
.data <- BP
attach(.data)
age <- as.numeric(as.Date("2000-01-01") - birthdate)/365.25
agegr <- pyramid(age,sex, bin=20)$ageGroup
.data$hypertension <- sbp >= 140 | dbp >=90
detach(.data)
model1 <- glm(hypertension ~ sex + agegr + saltadd, family=binomial,
data=.data)
logistic.display(model1) -> table3
attributes(table3)
table3
table3$table
# You may want to save table3 into a spreadsheet
write.csv(table3$table, file="table3.csv") # Note $table
## Have a look at this file in Excel, or similar spreadsheet program
file.remove(file="table3.csv")
model2 <- glm(hypertension ~ sex * age + sex * saltadd, family=binomial,
data=.data)
logistic.display(model2)
# More than 1 interaction term so 'simplified turned to TRUE
reg1 <- lm(sbp ~ sex + agegr + saltadd, data=.data)
regress.display(reg1)
reg2 <- glm(sbp ~ sex + agegr + saltadd, family=gaussian, data=.data)
regress.display(reg2)
data(Compaq)
cox1 <- coxph(Surv(year, status) ~ hospital + stage * ses, data=Compaq)
cox.display(cox1, crude.p.value=TRUE)
# Ordinal logistic regression
library(nnet)
options(contrasts = c("contr.treatment", "contr.poly"))
house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
house.plr
ordinal.or.display(house.plr)
# Polytomous or multinomial logistic regression
house.multinom <- multinom(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing)
summary(house.multinom)
mlogit.display(house.multinom, alpha=.01) # with 99% confidence limits.
# }
Run the code above in your browser using DataLab