## Using an epiflows object --------------------------------
data("YF_flows")
data("YF_locations")
ef <- make_epiflows(flows = YF_flows,
locations = YF_locations,
pop_size = "location_population",
duration_stay = "length_of_stay",
num_cases = "num_cases_time_window",
first_date = "first_date_cases",
last_date = "last_date_cases"
)
## functions generating incubation and infectious periods
incubation <- function(n) {
rlnorm(n, 1.46, 0.35)
}
infectious <- function(n) {
rnorm(n, 4.5, 1.5/1.96)
}
res <- estimate_risk_spread(ef,
location_code = "Espirito Santo",
r_incubation = incubation,
r_infectious = infectious,
n_sim = 1e5,
return_all_simulations = TRUE)
boxplot(res, las = 3)
## Using other data --------------------------------------------------
data(YF_Brazil)
indstate <- 1 # "Espirito Santo" (indstate = 1),
# "Minas Gerais" (indstate = 2),
# "Southeast Brazil" (indstate = 5)
res <- estimate_risk_spread(
location_code = YF_Brazil$states$location_code[indstate],
location_population = YF_Brazil$states$location_population[indstate],
num_cases_time_window = YF_Brazil$states$num_cases_time_window[indstate],
first_date_cases = YF_Brazil$states$first_date_cases[indstate],
last_date_cases = YF_Brazil$states$last_date_cases[indstate],
num_travellers_to_other_locations = YF_Brazil$T_D[indstate,],
num_travellers_from_other_locations = YF_Brazil$T_O[indstate,],
avg_length_stay_days = YF_Brazil$length_of_stay,
r_incubation = incubation,
r_infectious = infectious,
n_sim = 100000,
return_all_simulations = FALSE
)
head(res)
Run the code above in your browser using DataLab