Learn R Programming

episensr (version 0.7.1)

multidimBias: Multidimensional sensitivity analysis for different sources of bias

Description

Multidimensional sensitivity analysis for different sources of bias

Usage

multidimBias(exposed, case, type = c("exposure", "outcome", "confounder",
  "selection"), se = NULL, sp = NULL, bias = NULL, OR.sel = NULL,
  alpha = 0.05, dec = 4, print = TRUE)

Arguments

exposed
Exposure variable. If a variable, this variable is tabulated against.
case
Outcome variable.
type
Implement analysis for exposure misclassification, outcome misclassification, unmeasured confounder, or selection bias.
se
Numeric vector of sensitivities.
sp
Numerci vector of specificities.
bias
List of bias parameters. The list is made of 3 vectors of the same length:
  1. Prevalence of Confounder in Exposure+ population,
  2. Prevalence of Confounder in Exposure- population, and
  3. Relative risk between Confounder and Outcome.
OR.sel
Selection odds ratios, for selection bias implementation.
alpha
Significance level.
dec
Number of decimals in the printout.
print
A logical scalar. Should the results be printed?

Value

  • A list with elements:
  • obs.dataThe analysed 2 x 2 table from the observed data.
  • obs.measuresA table of odds ratios and relative risk with confidence intervals.
  • adj.measuresMultidimensional corrected relative risk and/or odds ratio data.
  • bias.parmsBias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.109--116, Springer.

Examples

Run this code
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "exposure",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "outcome",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "confounder",
bias = list(seq(.72, .92, by = .02),
seq(.01, .11, by = .01), seq(.13, 1.13, by = .1)))
multidimBias(matrix(c(136, 107, 297, 165),
dimnames = list(c("Uveal Melanoma+", "Uveal Melanoma-"),
c("Mobile Use+", "Mobile Use -")),
nrow = 2, byrow = TRUE),
type = "selection",
OR.sel = seq(1.5, 6.5, by = .5))

Run the code above in your browser using DataLab