Learn R Programming

eplusr (version 0.8.3)

param: Create and Run Parametric Analysis, and Collect Results

Description

ParametricJob class provides a prototype of conducting parametric analysis of EnergyPlus simulations.

Arguments

Usage

param <- param_job(idf, epw)
param$apply_measure(measure, ..., .names = NULL)
param$run(dir = NULL, parallel_backend = future::multiprocess)
param$kill(which = NULL)
param$status(which = NULL)
param$errors(info = FALSE)
param$output_dir(which = NULL)
param$locate_output(which = NULL, suffix = ".err", strict = TRUE)
param$report_data_dict(which = NULL)
param$report_data(which = NULL, key_value = NULL, name = NULL, year = NULL, tz = "GMT", case = "auto")
param$tabular_data(which = NULL)
param$print()

Create

param <- param_job(idf, epw)

Arguments

  • idf: Path to EnergyPlus IDF or IMF file or an Idf object.

  • epw: Path to EnergyPlus EPW file or an Epw object.

Get Seed Model and Weather

param$seed()
param$weather()

$seed() will return the input Idf object.

$weather() will return the input Epw object.

Apply Design Alternatives

param$apply_measure(measure, ..., .names = NULL)

$apply_measure() allows to apply a measure to an Idf and creates parametric models for analysis. Basically, a measure is just a function that takes an Idf object and other arguments as input, and returns a modified Idf object as output. Use ... to supply different arguments to that measure. Under the hook, mapply() is used to create multiple Idfs according to the input values.

Arguments

  • measure: A function that takes an Idf and other arguments as input and returns an Idf object as output.

  • ...: Other arguments passed to that measure.

  • .names: A character vector of the names of parametric Idfs. If NULL, the new Idfs will be named in format measure_name + number.

Run and Collect Results

param$run(dir = NULL, parallel_backend = future::multiprocess)
param$kill(which = NULL)
param$status(which = NULL)
param$errors(info = FALSE)
param$output_dir(which = NULL)
param$locate_output(which = NULL, suffix = ".err", strict = TRUE)
param$report_data_dict(which = NULL)
param$report_data(which = NULL, key_value = NULL, name = NULL, year = NULL, tz = "GMT", case = "auto")
param$tabular_data(which = NULL)

All those functions have the same meaning in EplusJob class, except that they only return the results of specified simulation.

Arguments

  • which: An integer vector of the indexes or a character vector or names of parametric simulations.

  • parallel_backend: Any acceptable input for future::plan().

All other arguments have the same meanings as in EplusJob class.

Details

Basically, it is a collection of multiple EplusJob objects.