rsq
object.
plotRsq( rsq, par=c(2,2), ...)
rsq
. See calc.Rsq
for function details.mfrow
parameter of the par()
function.hist
and par
when they are called.rsq
. Three histograms are drawn: the first one shows the R square value distribution of single QTLs. The second shows the distribution for QTL interactions. The last one shows all R square values distribution.
calc.Rsq
,peak.2.array
data(seed10);
seed10 <- calc.genoprob( cross=seed10, step=2, off.end=0, error.prob=0,
map.function='kosambi', stepwidth='fixed');
seed10 <- sim.geno( cross=seed10, step=2, off.end=0, error.prob=0,
map.function='kosambi', stepwidth='fixed');
out.em <- scanone( seed10, pheno.col=1:50, model='normal', method='hk');
out.peak <- define.peak(out.em,'all');
out.rsq <- calc.Rsq(seed10,out.peak);
# plotting R quare data
plotRsq(out.rsq);
plotRsq(out.rsq,par=c(1,3));
Run the code above in your browser using DataLab