shrink.erboost: L1 shrinkage of the predictor variables in a erboost
Description
Performs recursive shrinkage in each of the trees in a erboost fit using different shrinkage parameters for each variable.Usage
shrink.erboost(object,
n.trees,
lambda = rep(10, length(object$var.names)),
...)Arguments
n.trees
the number of trees to use
lambda
a vector with length equal to the number of variables containing the shrinkage parameter for each variable
...
other parameters (ignored)
Value
- predFPredicted values from the shrunken tree
- objectiveThe value of the loss function associated with the predicted values
- gradientA vector with length equal to the number of variables containing the derivative of the objective function with respect to beta, the logit transform of the shrinkage parameter for each variable
Warning
This function is experimental.Details
This function is currently experimental. Used in conjunction with a gradient ascent search for inclusion of variables.References
Y. Yang and H. Zou (2012) Nonparametric Multivariate Expectile Regression via ER-Boost, submitted to Journal of Business & Economic Statistics.Hastie, T. J., and Pregibon, D. "Shrinking Trees." AT&T Bell Laboratories Technical Report (March 1990). http://www-stat.stanford.edu/~hastie/Papers/shrinktree.ps