# Example in Wages & Tait (2015)
tox_skeleton = c(0.01, 0.08, 0.15, 0.22, 0.29, 0.36)
eff_skeletons = matrix(nrow=11, ncol=6)
eff_skeletons[1,] <- c(0.60, 0.50, 0.40, 0.30, 0.20, 0.10)
eff_skeletons[2,] <- c(0.50, 0.60, 0.50, 0.40, 0.30, 0.20)
eff_skeletons[3,] <- c(0.40, 0.50, 0.60, 0.50, 0.40, 0.30)
eff_skeletons[4,] <- c(0.30, 0.40, 0.50, 0.60, 0.50, 0.40)
eff_skeletons[5,] <- c(0.20, 0.30, 0.40, 0.50, 0.60, 0.50)
eff_skeletons[6,] <- c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60)
eff_skeletons[7,] <- c(0.20, 0.30, 0.40, 0.50, 0.60, 0.60)
eff_skeletons[8,] <- c(0.30, 0.40, 0.50, 0.60, 0.60, 0.60)
eff_skeletons[9,] <- c(0.40, 0.50, 0.60, 0.60, 0.60, 0.60)
eff_skeletons[10,] <- c(0.50, 0.60, 0.60, 0.60, 0.60, 0.60)
eff_skeletons[11,] <- c(rep(0.60, 6))
eff_skeleton_weights = rep(1, nrow(eff_skeletons))
tox_limit = 0.33
eff_limit = 0.05
model <- get_wages_and_tait(tox_skeleton = tox_skeleton,
eff_skeletons = eff_skeletons,
tox_limit = tox_limit, eff_limit = eff_limit,
num_randomise = 20)
fit <- model %>% fit('1NN 2EN 3BE')
fit %>% recommended_dose()
fit %>% is_randomising()
fit %>% dose_admissible()
fit %>% prob_administer()
Run the code above in your browser using DataLab