# Data: See Introduction to the New Statistics, first edition
esci_single_r <- data.frame(
studies = c(
'Violin, viola' ,
'Strings' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'All' ,
'Piano' ,
'Piano' ,
'Band' ,
'Music majors' ,
'Music majors' ,
'All'
),
rvalues = c(
.67,
.51,
.4,
.46,
.47,
.228,
-.224,
.104,
.322,
.231,
.67,
.41,
.34,
.31,
.54,
.583
),
sample_size = c(
109,
55,
19,
30,
19,
52,
24,
52,
16,
97,
57,
107,
178,
64,
19,
135
),
subsets = as.factor(
c(
'Strings' ,
'Strings' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Piano' ,
'Strings' ,
'Strings' ,
'Strings' ,
'Strings'
)
)
)
# Meta-analysis, random effects, no moderator
estimate <- esci::meta_r(
esci_single_r,
rvalues,
sample_size,
studies,
random_effects = TRUE
)
# Forest plot
myplot_forest <- esci::plot_meta(estimate)
# Meta-analysis, random effects, moderator (subsets)
estimate_moderator <- esci::meta_r(
esci_single_r,
rvalues,
sample_size,
studies,
subsets,
random_effects = TRUE
)
# Forest plot
myplot_forest_moderator <- esci::plot_meta(estimate_moderator)
Run the code above in your browser using DataLab