Learn R Programming

essHist (version 1.2.2)

essHist-package: essHist

Description

essHist

Arguments

Details

Package: essHist
Type: Package
Version: 1.2.2
Date: 2019-05-10
License: GPL-3

Index:

essHistogram    Compute the essential histogram
checkHistogram  Check any estimator by the multiscale confidence set

genIntv Generate the system of intervals msQuantile Simulate the quantile of multiscale statistics

dmixnorm Compute density function of Gaussian mixtures pmixnorm Compute distribution function of Gaussian mixtures rmixnorm Generate random number of Gaussian mixtures paramExample Output detailed parameters for some famous examples

References

Li, H., Munk, A., Sieling, H., and Walther, G. (2016). The essential histogram. arXiv:1612.07216

Examples

Run this code
# NOT RUN {
# Simulate data
set.seed(123)
type = 'skewed_unimodal'
n = 500
y = rmixnorm(n, type = type)

# Compute the essential histogram
eh = essHistogram(y, plot = FALSE)

# Plot results
#     compute oracle density
x  = sort(y)
od = dmixnorm(x, type = type)
#     compare with orcle density
plot(x, od, type = "l", xlab = NA, ylab = NA, col = "red", main = type)
lines(eh)
legend("topleft", c("Oracle density", "Essential histogram"), 
       lty = c(1,1), col = c("red", "black"))



##### Evaluate other method
set.seed(123)
# Data: mixture of Gaussians "harp"
n = 500
y = rmixnorm(n, type = 'harp')

# Oracle density
x = sort(y)
ho = dmixnorm(x, type = 'harp')

# R default histogram
h  = hist(y, plot = FALSE)

# Check R default histogram to local multiscale constraints
b = checkHistogram(h, y, ylim=c(-0.1,0.16))
lines(x, ho, col = "red")
rug(x, col = 'blue')
legend("topright", c("R-Histogram", "Truth"), col = c("black", "red"), lty = c(1,1))
# }

Run the code above in your browser using DataLab