Learn R Programming

esviz (version 0.0.2)

map_temp: Sample Of Experimental And Observational Climate Spatial Data

Description

This sample data contain gridded seasonal forecast and corresponding observational data from ECMWF-System 5 forecast system and ERA-5 reconstruction. Specifically, for the monthly mean 2-meter temperature ("tas") variable, the first 3 ensemble members, the first 5 forecast time steps from November initial month, year 2000 to 2005, the Iberian Peninsula region (35N-45N, 10W-5E).

Arguments

Details

The package "startR" is used to load the data from the data esarchive in the Earth Sciences Department of Barcelona Supercomputing Center.

# 1. Load libraries and define common variables library(startR) library(CSTools)

sdates <- sapply(2000:2005, function(x) paste0(x, '1101')) lonmax <- 5 lonmin <- -10 latmax <- 45 latmin <- 35

# 2. Load exp

repos_exp <- paste0('/esarchive/exp/ecmwf/system5c3s/monthly_mean/', '$var$_f6h/$var$_$sdate$.nc')

exp <- Start(dat = repos_exp, var = 'tas', member = indices(1:3), sdate = sdates, time = indices(1:5), lat = values(list(latmin, latmax)), lat_reorder = Sort(decreasing = FALSE), lon = values(list(lonmin, lonmax)), lon_reorder = CircularSort(-180, 180), synonims = list(lon = c('lon', 'longitude'), lat = c('lat', 'latitude'), member = c('member', 'ensemble')), return_vars = list(lat = NULL, lon = NULL, time = 'sdate'), retrieve = TRUE)

# 3. Load obs

exp_time <- attr(exp, "Variables")$common$time obs_date <- array(format(exp_time, "

path_obs <- '/esarchive/recon/ecmwf/era5/monthly_mean/$var$_f1h-r1440x721cds/$var$_$date$.nc' obs <- Start(dat = path_obs, var = 'tas', date = obs_date, split_multiselected_dims = TRUE, lat = values(list(latmin, latmax)), lat_reorder = Sort(decreasing = FALSE), lon = values(list(lonmin, lonmax)), lon_reorder = CircularSort(-180, 180), synonims = list(lon = c('lon', 'longitude'), lat = c('lat', 'latitude')), transform = CDORemapper, transform_extra_cells = 2, transform_params = list(grid = 'r360x181', method = 'conservative'), transform_vars = c('lat', 'lon'), return_vars = list(lon = NULL, lat = NULL, time = 'date'), retrieve = TRUE)

# 4. Check data

obs_time <- attr(obs,"Variables")$common$time

identical(format(obs_time, " #[1] TRUE exp_lat <- attr(exp, "Variables")$common$lat exp_lon <- attr(exp, "Variables")$common$lon obs_lat <- attr(obs, "Variables")$common$lat obs_lon <- attr(obs, "Variables")$common$lon

all.equal(exp_lat, obs_lat, check.attributes = F) #[1] TRUE all.equal(exp_lon, obs_lon, check.attributes = F) #[1] TRUE

# 5. Combine into one object

map_temp <- list() map_temp$exp <- exp map_temp$obs <- obs