Learn R Programming

etasFLP (version 1.3.0)

summary.etasclass: Summary method for etasclass objects

Description

This is the main method to summarize the output of an object of class etasclass.

Gives some information on the execution and gives estimates of the ETAS parameters together with the standard errors.

Usage

"summary"(object,...)

Arguments

object
an etaclass object to pass to summary.
...
other arguments.

Value

Displays AIC values, parameters estimates and their standard errors, together with some information on the execution of the etasclass estimation process. Displays also the exact call of the function that generated etasclass

Details

Displays summary information about an object of class etasclass.

See Also

etasclass,eqcat, profile.etasclass

Examples

Run this code
## Not run: 
# data("italycatalog")
# # load a sample catalog of the italian seismicity
# 
# 
# etas.flp=etasclass(italycatalog,  
# magn.threshold = 3.0,  magn.threshold.back = 3.5,
# k0 = 0.005, c = 0.005, p = 1.01, a = 1.05, gamma = 0.6, q = 1.52, d = 1.1,
# params.ind = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
# declustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
# onlytime = FALSE, is.backconstant = FALSE,
# description = "etas flp",sectoday = TRUE, usenlm = TRUE, epsmax = 0.001)
# # execution of etasclass for events with minimum magnitude of 3.0. 
# # The events with magnitude at least 3.5 are used to build a first approximation
# # for the background intensity function
# # (magn.threshold.back=3.5)
# 
# # summary method for the etasclass object
# 
# summary(etas.flp)
# Call: 
#  
# etasclass(cat.orig = italycatalog, magn.threshold = 3, magn.threshold.back = 3.5, 
#     k0 = 0.005, c = 0.005, p = 1.01, a = 1.05, gamma = 0.6, d = 1.1, 
#     q = 1.52, params.ind = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, 
#         TRUE, TRUE), declustering = TRUE, thinning = FALSE, flp = TRUE, 
#     ndeclust = 15, onlytime = FALSE, is.backconstant = FALSE, 
#     description = "etas flp", sectoday = TRUE, usenlm = TRUE, 
#     epsmax = 0.001)
# 
#  
#  
# etas flp 
# Execution started:                  2015-06-02 13:01:04 
# Elapsed time of execution (hours)   0.2473813 
# Number of observations             2158 
# Magnitude threshold                3 
# declustering                        TRUE 
# Number of declustering iterations   4 
# Kind of declustering                weighting 
# flp                                 TRUE 
# sequence of AIC values for each iteration 
# 49620.08 48458.86 48418.2 48415.17 
#  
# ------------------------------------------------------- 
#  
# ETAS Parameters: 
#             Estimates       std.err.
# mu           0.355850       0.011294
# k0           0.008373       0.002053
# c            0.009404       0.001795
# p            1.121630       0.016271
# a            1.509371       0.064077
# gamma        0.857945       0.084688
# d            1.915139       0.306384
# q            1.836391       0.067067
# ------------------------------------------------------- 
# 
# ## End(Not run)

Run the code above in your browser using DataLab