## Not run:
# data("italycatalog")
# # load a sample catalog of the italian seismicity
#
#
# etas.flp=etasclass(italycatalog,
# magn.threshold = 3.0, magn.threshold.back = 3.5,
# k0 = 0.005, c = 0.005, p = 1.01, a = 1.05, gamma = 0.6, q = 1.52, d = 1.1,
# params.ind = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
# declustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
# onlytime = FALSE, is.backconstant = FALSE,
# description = "etas flp",sectoday = TRUE, usenlm = TRUE, epsmax = 0.001)
# # execution of etasclass for events with minimum magnitude of 3.0.
# # The events with magnitude at least 3.5 are used to build a first approximation
# # for the background intensity function
# # (magn.threshold.back=3.5)
#
# # summary method for the etasclass object
#
# summary(etas.flp)
# Call:
#
# etasclass(cat.orig = italycatalog, magn.threshold = 3, magn.threshold.back = 3.5,
# k0 = 0.005, c = 0.005, p = 1.01, a = 1.05, gamma = 0.6, d = 1.1,
# q = 1.52, params.ind = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
# TRUE, TRUE), declustering = TRUE, thinning = FALSE, flp = TRUE,
# ndeclust = 15, onlytime = FALSE, is.backconstant = FALSE,
# description = "etas flp", sectoday = TRUE, usenlm = TRUE,
# epsmax = 0.001)
#
#
#
# etas flp
# Execution started: 2015-06-02 13:01:04
# Elapsed time of execution (hours) 0.2473813
# Number of observations 2158
# Magnitude threshold 3
# declustering TRUE
# Number of declustering iterations 4
# Kind of declustering weighting
# flp TRUE
# sequence of AIC values for each iteration
# 49620.08 48458.86 48418.2 48415.17
#
# -------------------------------------------------------
#
# ETAS Parameters:
# Estimates std.err.
# mu 0.355850 0.011294
# k0 0.008373 0.002053
# c 0.009404 0.001795
# p 1.121630 0.016271
# a 1.509371 0.064077
# gamma 0.857945 0.084688
# d 1.915139 0.306384
# q 1.836391 0.067067
# -------------------------------------------------------
#
# ## End(Not run)
Run the code above in your browser using DataLab