Learn R Programming

eva3dm (version 1.11)

sat: Functions to model evaluation using satellite

Description

functions to evaluate the spatial performance using satellite

Usage

sat(
  mo,
  ob,
  rname,
  table = NULL,
  n = 6,
  min = NA,
  max = NA,
  scale,
  method = "bilinear",
  eval_function = stat,
  mask,
  skip_interp = FALSE,
  verbose = TRUE,
  ...
)

Value

a data.frame

Arguments

mo

SpatRaster or raster with model

ob

SpatRaster or raster with observations

rname

passed to stat

table

data.frame to append the results

n

number of points from the boundary removed, default is 5

min

minimum value cutoff

max

maximum value cutoff

scale

multiplier for model and observation (after min/max cutoff)

method

passed to terra::resample

eval_function

evaluation function (default is stat)

mask

optional SpatVector to mask the results

skip_interp

skip the interpolation step

verbose

set TRUE to display additional information

...

other arguments passed to stat

Examples

Run this code
model_no2 <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
                              "/camx_no2.Rds"))
omi_no2   <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
                              "/omi_no2.Rds"))

# generate the statistical indexes
sat(mo = model_no2,ob = omi_no2,rname = 'NO2_statistical')

# generate categorical evaluation using 3.0 as threshold
sat(mo = model_no2,ob = omi_no2,rname = 'NO2_categorical',
    eval_function = cate, threshold = 3.0)

# customizing the evaluation function: inclusion of p.value from stats::cor.test()
stat_p <- function(x, y, ...){
  table         <- eva3dm::stat(x, y, ...)
  cor.result    <- stats::cor.test(x, y, ... )
  table$p.value <- cor.result$p.value
  table         <- table[,c(1:4,12,5:11)]
  return(table)
}

sat(mo = model_no2,ob = omi_no2,rname = 'NO2_statistical_with_p',eval_function = stat_p)

Run the code above in your browser using DataLab