The optimization algorithm implemented in harris is described on Silva & Almeida (1990) and
summarized in Denoeux & Masson (2004). The four parameters are:
options[1]
Display parameter : 1 (default) displays some results.
options[2]
Maximum number of iterations (default: 100).
options[3]
Relative error for stopping criterion (default: 1e-4).
The trace, a list with two attributes: 'time' and 'fct' (if tr==TRUE).
Arguments
fun
Function to be optimized. The function 'fun' should return a scalar function value 'fun'
and a vector 'grad' containing the partial derivatives of fun at x.
x
Initial value (a vector).
options
Vector of parameters (see details).
tr
If TRUE, returns a trace of objective function vs CPU time
...
Additional parameters passed to fun
Author
Thierry Denoeux.
References
F. M. Silva and L. B. Almeida. Speeding up backpropagation. In Advanced Neural
Computers, R. Eckmiller, ed., Elsevier-North-Holland, New-York, 151-158, 1990.
T. Denoeux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data.
IEEE Transactions on Systems, Man and Cybernetics B, Vol. 34, Issue 1, 95--109, 2004.