# NOT RUN {
# }
# NOT RUN {
library(evgam)
data(COprcp)
COprcp$year <- format(COprcp$date, "%Y")
COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)
COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row,])
fmla_gev <- list(prcp ~ s(lon, lat, k=30) + s(elev, bs="cr"), ~ s(lon, lat, k=20), ~ 1)
m_gev <- evgam(fmla_gev, data=COprcp_gev, family="gev")
predict(m_gev, COprcp_meta)
predict(m_gev, COprcp_meta, type="response")
predict(m_gev, COprcp_meta, probs=.99)
COprcp_qq1 <- subset(COprcp_gev, name == "BOULDER")
predict(m_gev, COprcp_qq1, type="qqplot")
COprcp_qq2 <- subset(COprcp_gev, name %in% c("BOULDER", "FT COLLINS"))
predict(m_gev, COprcp_qq2, type="qqplot")
fitted(m_gev)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab