# NOT RUN {
data(fremantle)
fmla_gev <- list(SeaLevel ~ s(Year, k=5, bs="cr"), ~ 1, ~ 1)
m_gev <- evgam(fmla_gev, fremantle, family = "gev")
# }
# NOT RUN {
data(COprcp)
## fit generalised Pareto distribution to excesses on 20mm
COprcp <- cbind(COprcp, COprcp_meta[COprcp$meta_row,])
threshold <- 20
COprcp$excess <- COprcp$prcp - threshold
COprcp_gpd <- subset(COprcp, excess > 0)
fmla_gpd <- list(excess ~ s(lon, lat, k=12) + s(elev, k=5, bs="cr"), ~ 1)
m_gpd <- evgam(fmla_gpd, data=COprcp_gpd, family="gpd")
## fit generalised extreme value distribution to annual maxima
COprcp$year <- format(COprcp$date, "%Y")
COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)
COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row,])
fmla_gev2 <- list(prcp ~ s(lon, lat, k=30) + s(elev, bs="cr"), ~ s(lon, lat, k=20), ~ 1)
m_gev2 <- evgam(fmla_gev2, data=COprcp_gev, family="gev")
summary(m_gev2)
plot(m_gev2)
predict(m_gev2, newdata=COprcp_meta, type="response")
## fit point process model using r-largest order statistics
# we have `ny=30' years' data and use top 45 order statistics
pp_args <- list(id="id", ny=30, r=45)
m_pp <- evgam(fmla_gev2, COprcp, family="pp", pp.args=pp_args)
## estimate 0.98 quantile using asymmetric Laplace distribution
fmla_ald <- prcp ~ s(lon, lat, k=15) + s(elev, bs="cr")
m_ald <- evgam(fmla_ald, COprcp, family="ald", ald.args=list(tau=.98))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab