lambda
, threshold u
GPD scale sigmau
and shape xi
and tail fraction phiu
.dbckdengpd(x, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)),
sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0,
phiu = TRUE, bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = 0, xmax = Inf, log = FALSE)
pbckdengpd(q, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)),
sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0,
phiu = TRUE, bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = 0, xmax = Inf, lower.tail = TRUE)
qbckdengpd(p, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)),
sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0,
phiu = TRUE, bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = 0, xmax = Inf, lower.tail = TRUE)
rbckdengpd(n = 1, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)),
sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0,
phiu = TRUE, bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = 0, xmax = Inf)
NULL
(default)dbckdengpd
gives the
density, pbckdengpd
gives
the cumulative distribution function,
qbckdengpd
gives the
quantile function and
rbckdengpd
gives a random
sample.gpd
for details of
boundary corrected kernel density estimators.
The user can pre-specify phiu
permitting a
parameterised value for the tail fraction $\phi_u$.
Alternatively, when phiu=TRUE
the tail fraction is
estimated as the tail fraction from the normal bulk
model.
The cumulative distribution function with tail fraction
$\phi_u$ defined by the upper tail fraction of the
kernel density estimation Using normal kernel
(phiu=TRUE
), upto the threshold $x \le u$,
given by: pbckden(x,
kerncentres, lambda, bcmethod, proper, nn, offset, xmax,
lower.tail)
and pgpd(x, u, sigmau, xi)
).
The cumulative distribution function for pre-specified
$\phi_u$, upto the threshold $x \le u$, is given
by: gpd
and
dnorm
Other bckdengpd bckden kden: bckden
,
dbckden
, pbckden
,
qbckden
, rbckden
par(mfrow=c(2,2))
kerncentres=rgamma(500, 2, 1)
xx = seq(0.1, 10, 0.01)
hist(kerncentres, breaks = 100, freq = FALSE)
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1))
plot(xx, pbckdengpd(xx, kerncentres, lambda = 0.1), type = "l")
lines(xx, pbckdengpd(xx, kerncentres, lambda = 0.1, xi = 0.3), col = "red")
lines(xx, pbckdengpd(xx, kerncentres, lambda = 0.1, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1, cex = 0.5)
kerncentres=rweibull(1000, 2, 1)
x = rbckdengpd(1000, kerncentres, lambda = 0.1, phiu = TRUE)
xx = seq(0.01, 3.5, 0.01)
hist(x, breaks = 100, freq = FALSE)
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, phiu = TRUE))
plot(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, xi=0, phiu = 0.1), type = "l")
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, xi=-0.2, phiu = 0.1), col = "red")
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, xi=0.2, phiu = 0.1), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
Run the code above in your browser using DataLab