Learn R Programming

evoTS (version 1.0.3)

opt.joint.accel: Fit an Unbiased Random Walk with an accelerating rate of change through time.

Description

Function to find maximum likelihood solutions to a Unbiased Random Walk with an accelerating or decelerating rate of change through time.

Usage

opt.joint.accel(y, pool = TRUE, meth = "L-BFGS-B", hess = FALSE)

Value

logL

the log-likelihood of the optimal solution

AICc

AIC with a correction for small sample sizes

parameters

parameter estimates

modelName

abbreviated model name

method

Joint consideration of all samples

K

number of parameters in the model

n

the number of observations/samples

Arguments

y

an univariate evoTS object.

pool

logical indicating whether to pool variances across samples

meth

optimization method, passed to function optim. Default is "L-BFGS-B".

hess

logical, indicating whether to calculate standard errors from the Hessian matrix.

Author

Kjetil Lysne Voje

Examples

Run this code
## Generate a paleoTS object by simulating a univariate evolutionary sequence
y <- paleoTS::sim.GRW(30)

## Fit the model
opt.joint.accel(y)

Run the code above in your browser using DataLab