
Calculates covariance matrix correlation via random skewers
RandomSkewers(cov.x, cov.y, ...)# S3 method for default
RandomSkewers(cov.x, cov.y, num.vectors = 10000, ...)
# S3 method for list
RandomSkewers(
cov.x,
cov.y = NULL,
num.vectors = 10000,
repeat.vector = NULL,
parallel = FALSE,
...
)
# S3 method for mcmc_sample
RandomSkewers(cov.x, cov.y, num.vectors = 10000, parallel = FALSE, ...)
If cov.x and cov.y are passed, returns average value of response vectors correlation ('correlation'), significance ('probability') and standard deviation of response vectors correlation ('correlation_sd')
If cov.x and cov.y are passed, same as above, but for all matrices in cov.x.
If only a list is passed to cov.x, a matrix of RandomSkewers average values and probabilities of all comparisons. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.
Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it.
First argument is compared to cov.y. Optional if cov.x is a list.
additional arguments passed to other methods.
Number of random vectors used in comparison.
Vector of repeatabilities for correlation correction.
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.
Diogo Melo, Guilherme Garcia
Cheverud, J. M., and Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461-469.
KrzCor
,MantelCor
,DeltaZCorr
c1 <- RandomMatrix(10, 1, 1, 10)
c2 <- RandomMatrix(10, 1, 1, 10)
c3 <- RandomMatrix(10, 1, 1, 10)
RandomSkewers(c1, c2)
RandomSkewers(list(c1, c2, c3))
# \donttest{
reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, sample.size = 10,
RandomSkewers, num.vectors = 100,
iterations = 10))
RandomSkewers(list(c1, c2, c3), repeat.vector = reps)
c4 <- RandomMatrix(10)
RandomSkewers(list(c1, c2, c3), c4)
# }
if (FALSE) {
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
RandomSkewers(list(c1, c2, c3), parallel = TRUE)
}
Run the code above in your browser using DataLab