Learn R Programming

evprof (version 1.1.2)

detect_outliers: Detect outliers

Description

Detect outliers

Usage

detect_outliers(
  sessions,
  MinPts = NULL,
  eps = NULL,
  noise_th = 2,
  log = FALSE,
  start = getOption("evprof.start.hour")
)

Value

sessions tibble with extra boolean column Outlier

Arguments

sessions

tibble, sessions data set in evprof standard format.

MinPts

MinPts parameter for DBSCAN clustering

eps

eps parameter for DBSCAN clustering

noise_th

noise threshold

log

logical, whether to transform ConnectionStartDateTime and ConnectionHours variables to natural logarithmic scale (base = exp(1)).

start

integer, start hour in the x axis of the plot.

Examples

Run this code
library(dplyr)
sessions_outliers <- california_ev_sessions %>%
  sample_frac(0.05) %>%
  detect_outliers(start = 3, noise_th = 5, eps = 2.5)

Run the code above in your browser using DataLab