# \donttest{
library(dplyr)
# Classify each session to the corresponding user profile
sessions_profiles <- california_ev_sessions_profiles %>%
dplyr::sample_frac(0.05)
# Get a table with the energy GMM parameters
get_energy_models(sessions_profiles, log = TRUE)
# If there is a `Power` variable in the data set
# you can create an energy model per power rate and user profile
# First it is convenient to round the `Power` values for more generic models
sessions_profiles <- sessions_profiles %>%
mutate(Power = round_to_interval(Power, 3.7)) %>%
filter(Power < 11)
sessions_profiles$Power[sessions_profiles$Power == 0] <- 3.7
get_energy_models(sessions_profiles, log = TRUE, by_power = TRUE)
# }
Run the code above in your browser using DataLab