Learn R Programming

evreg (version 1.1.1)

Evidential Regression

Description

An implementation of the 'Evidential Neural Network for Regression' model recently introduced in Denoeux (2023) . In this model, prediction uncertainty is quantified by Gaussian random fuzzy numbers as introduced in Denoeux (2023) . The package contains functions for training the network, tuning hyperparameters by cross-validation or the hold-out method, and making predictions. It also contains utilities for making calculations with Gaussian random fuzzy numbers (such as, e.g., computing the degrees of belief and plausibility of an interval, or combining Gaussian random fuzzy numbers).

Copy Link

Version

Install

install.packages('evreg')

Monthly Downloads

25

Version

1.1.1

License

GPL-3

Maintainer

Thierry Denoeux

Last Published

May 9th, 2024

Functions in evreg (1.1.1)

ENNreg_init

Parameter initialization for the ENNreg model
ENNreg

Training the ENNreg model
ENNreg_cv

Hyperparameter tuning for the ENNreg model using cross-validation
ENNreg_holdout

Hyperparameter tuning for the ENNreg model using the hold-out method
evreg-package

evreg: Evidential Regression
intervals

Computation of prediction intervals from a trained ENNreg model
Bel

Degree of belief of interval for a Gaussian random fuzzy number
Belint

Finds a belief interval centered on mu for a Gaussian random fuzzy number
pl_contour

Contour function of a Gaussian random fuzzy number
predict.ENNreg

Prediction method for the ENNreg model
Pl

Degree of plausibility of interval for a Gaussian random fuzzy number
combination_GRFN

Combination of Gaussian random fuzzy numbers