Exponentially weighted Poisson regression model
ewp_reg(
formula,
family = "ewp3",
data,
verbose = TRUE,
method = "Nelder-Mead",
hessian = TRUE,
autoscale = TRUE,
maxiter = 500,
sum_limit = round(max(Y) * 3),
start_val = NULL
)an ewp model
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
choice of "ewp2" or "ewp3"
a data frame containing the variables in the model.
logical, defaults to TRUE; print model fitting progress
string, passed to optim, defaults to 'BFGS'
logical, defaults to TRUE; calculate Hessian?
logical, defaults to TRUE; automatically scale model parameters inside the optimisation routine based on initial estimates from a Poisson regression.
numeric, maximum number of iterations for optim
numeric, defaults to 3*maximum count; upper limit for the sum used for the normalizing factor.
list, defaults to fitting a Poisson regression; specify starting values