Learn R Programming

exametrika (version 1.6.0)

GridSearch: Grid Search for Optimal Parameters

Description

Performs a grid search to find optimal parameters for different analysis methods. Supports Biclustering, LCA (Latent Class Analysis), and LRA (Latent Rank Analysis).

Usage

GridSearch(
  obj,
  max_ncls = 10,
  max_nfld = 10,
  fun = "Biclustering",
  index = "BIC",
  ...
)

Value

A list containing: For Biclustering:

index_matrix

Matrix of fit indices for each ncls/nfld combination

optimal_ncls

Optimal number of classes/clusters

optimal_nfld

Optimal number of fields

optimal_result

Analysis result using optimal parameters

For LCA/LRA:

index_vec

Vector of fit indices for each ncls

optimal_ncls

Optimal number of classes/clusters

optimal_result

Analysis result using optimal parameters

Arguments

obj

Input data matrix or object to be analyzed

max_ncls

Maximum number of classes/clusters to test (default: 10)

max_nfld

Maximum number of fields to test for Biclustering (default: 10)

fun

Function name to use for analysis. Options: "Biclustering", "LCA", "LRA" (default: "Biclustering")

index

Fit index to optimize from TestFitIndices returned by each function. Options: "AIC", "BIC", etc. (default: "BIC")

...

Additional arguments passed to the analysis function

Examples

Run this code
if (FALSE) {
# Grid search for Biclustering
result <- grid_serch(data_matrix, max_ncls = 5, max_nfld = 5)

# Grid search for LCA
result <- grid_serch(data_matrix, max_ncls = 8, fun = "LCA")
}

Run the code above in your browser using DataLab