Performs a grid search to find optimal parameters for different
analysis methods.
Supports Biclustering, LCA (Latent Class Analysis),
and LRA (Latent Rank Analysis).
Usage
GridSearch(
obj,
max_ncls = 10,
max_nfld = 10,
fun = "Biclustering",
index = "BIC",
...
)
Value
A list containing:
For Biclustering:
index_matrix
Matrix of fit indices for each
ncls/nfld combination
optimal_ncls
Optimal number of classes/clusters
optimal_nfld
Optimal number of fields
optimal_result
Analysis result using optimal parameters
For LCA/LRA:
index_vec
Vector of fit indices for each ncls
optimal_ncls
Optimal number of classes/clusters
optimal_result
Analysis result using optimal parameters
Arguments
obj
Input data matrix or object to be analyzed
max_ncls
Maximum number of classes/clusters to test (default: 10)
max_nfld
Maximum number of fields to test for
Biclustering (default: 10)
fun
Function name to use for analysis.
Options: "Biclustering", "LCA", "LRA" (default: "Biclustering")
index
Fit index to optimize from TestFitIndices returned by
each function. Options: "AIC", "BIC", etc. (default: "BIC")
...
Additional arguments passed to the analysis function