Learn R Programming

exams.forge (version 1.0.10)

CImulen_data: Confidence Interval and Sample Size for the Population Mean Value

Description

Data generation for the necessary sample size of a confidence interval, for the population mean value. Either the estimation error \(e\) or the length of the interval \(l\) must be given (\(l=2*e\)). It is ensured that the computed s deviates from sigma.

Usage

CImulen_data(
  sigma,
  e = NULL,
  l = NULL,
  conf.level = c(0.9, 0.95, 0.99),
  nmin = 30,
  size = NA,
  u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)),
  full = FALSE
)

dcimulen( sigma, e = NULL, l = NULL, conf.level = c(0.9, 0.95, 0.99), nmin = 30, size = NA, u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)), full = FALSE )

Value

A data frame or a list with:

  • \(e\): estimation error

  • sigma: population variance

  • conf.level: confidence level

  • \(l\): interval length

  • x: \(1-alpha/2\)

  • q: \(z_{1-alpha/2}\)

  • q2: \(z^2_{1-alpha/2}\)

  • n: computed minimal sample size

  • N: the smallest integer, no less than n

  • s: sample standard deviation

Arguments

sigma

numeric: vector of possible variance

e

numeric: vector of estimation errors

l

numeric: vector of lengths of the interval

conf.level

numeric: vector of confidence levels of the interval (default: c(0.9, 0.95, 0.99))

nmin

numeric: minimal value of necessary observation (default: 30)

size

numeric: sample size for computing a sample standard deviation. Default NA means that the solution of the estimation is used

u

numeric: vector of quantiles used to sample the sample standard deviation (default: c(seq(0.15, 0.45, 0.001), seq(0.55, 0.85, 0.001)))

full

logical: if TRUE then a data frame with possible solution is returned, otherwise a list with a randomly chosen solution is returned (default: FALSE)

Examples

Run this code
# one solution
CImulen_data (1:10, e=(1:10)/10)
# all solutions
mul <- CImulen_data (1:10, e=(1:10)/10, full=TRUE)
str(mul)

Run the code above in your browser using DataLab