Learn R Programming

exams.forge (version 1.0.10)

CIpilen_data: Confidence Interval and Sample Size for the Population Proportion

Description

Data generation for the necessary sample size of a confidence interval, for the population proportion, using \(z^2/l^2)\). Either the estimation error \(e\) or the length of the interval \(l\) must be given (\(l=2*e\)). It is ensured that the computed p deviates from pi.

Usage

CIpilen_data(
  pi,
  e = NULL,
  l = NULL,
  conf.level = c(0.9, 0.95, 0.99),
  nmin = 30,
  size = NA,
  u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)),
  full = FALSE
)

dcipilen( pi, e = NULL, l = NULL, conf.level = c(0.9, 0.95, 0.99), nmin = 30, size = NA, u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)), full = FALSE )

Value

A data frame or a list with:

  • \(e\) estimation error

  • pi population proportion

  • conf.level confidence level

  • \(l\) interval length

  • x \(1-alpha/2\)

  • q \(z_{1-alpha/2}\)

  • q2 \(z^2_{1-alpha/2}\)

  • n computed minimal sample size

  • N the smallest integer, no less than n

  • p sample proportion

Arguments

pi

numeric: vector of possible population proportions

e

numeric: vector of estimation errors

l

numeric: vector of lengths of the interval

conf.level

numeric: vector of confidence levels of the interval (default: c(0.9, 0.95, 0.99))

nmin

numeric: minimal value of necessary observation (default: 30)

size

numeric: sample size for computing a sample standard deviation. Default NA means that the solution of the estimation is used

u

numeric: vector of quantiles used to sample the sample standard deviation (default: c(seq(0.15, 0.45, 0.001), seq(0.55, 0.85, 0.001)))

full

logical: if TRUE then a data frame with possible solution is returned, otherwise a list with a randomly chosen solution is returned (default: FALSE)

Examples

Run this code
# one solution
CIpilen_data((1:9/10), (1:9)/10)
# all solutions
pil <- CIpilen_data((1:9/10), (1:9)/10, full=TRUE)
str(pil)

Run the code above in your browser using DataLab