Data generation for the necessary sample size of a confidence interval, for the population proportion, using \(z^2/l^2)\).
Either the estimation error \(e\) or the length of the interval \(l\) must be given (\(l=2*e\)).
It is ensured that the computed p
deviates from pi
.
CIpilen_data(
pi,
e = NULL,
l = NULL,
conf.level = c(0.9, 0.95, 0.99),
nmin = 30,
size = NA,
u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)),
full = FALSE
)dcipilen(
pi,
e = NULL,
l = NULL,
conf.level = c(0.9, 0.95, 0.99),
nmin = 30,
size = NA,
u = c(seq(0.1, 0.4, 0.001), seq(0.6, 0.9, 0.001)),
full = FALSE
)
A data frame or a list with:
\(e\) estimation error
pi
population proportion
conf.level
confidence level
\(l\) interval length
x
\(1-alpha/2\)
q
\(z_{1-alpha/2}\)
q2
\(z^2_{1-alpha/2}\)
n
computed minimal sample size
N
the smallest integer, no less than n
p
sample proportion
numeric: vector of possible population proportions
numeric: vector of estimation errors
numeric: vector of lengths of the interval
numeric: vector of confidence levels of the interval (default: c(0.9, 0.95, 0.99)
)
numeric: minimal value of necessary observation (default: 30
)
numeric: sample size for computing a sample standard deviation. Default NA
means that the solution of the estimation is used
numeric: vector of quantiles used to sample the sample standard deviation (default: c(seq(0.15, 0.45, 0.001), seq(0.55, 0.85, 0.001))
)
logical: if TRUE
then a data frame with possible solution is returned, otherwise a list with a randomly chosen solution is returned (default: FALSE
)
# one solution
CIpilen_data((1:9/10), (1:9)/10)
# all solutions
pil <- CIpilen_data((1:9/10), (1:9)/10, full=TRUE)
str(pil)
Run the code above in your browser using DataLab