x the generated x values
y the generated y values
sumx \(\sum_{i=1}^n x_i\)
sumy \(\sum_{i=1}^n y_i\)
sumx2 \(\sum_{i=1}^n x_i^2\)
sumy2 \(\sum_{i=1}^n y_i^2\)
sumxy \(\sum_{i=1}^n x_i y_i\)
meanx the mean of x: \(1/n \sum_{i=1}^n x_i\)
meany the mean of y: \(1/n \sum_{i=1}^n y_i\)
varx the variation of x: \(\sum_{i=1}^n (x_i-\bar{x})^2\)
vary the variation of y: \(\sum_{i=1}^n (y_i-\bar{y})^2\)
varxy the common variation of x and y:\(\sum_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})\)
sxy the covariance of x and y
rxy the correlation of x and y
b0 the intercept of the linear regression
b1 the slope of the linear regression
r2 the coefficient of determination of the linear regression