x
the generated x values
y
the generated y values
sumx
\(\sum_{i=1}^n x_i\)
sumy
\(\sum_{i=1}^n y_i\)
sumx2
\(\sum_{i=1}^n x_i^2\)
sumy2
\(\sum_{i=1}^n y_i^2\)
sumxy
\(\sum_{i=1}^n x_i y_i\)
meanx
the mean of x: \(1/n \sum_{i=1}^n x_i\)
meany
the mean of y: \(1/n \sum_{i=1}^n y_i\)
varx
the variation of x: \(\sum_{i=1}^n (x_i-\bar{x})^2\)
vary
the variation of y: \(\sum_{i=1}^n (y_i-\bar{y})^2\)
varxy
the common variation of x and y:\(\sum_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})\)
sxy
the covariance of x and y
rxy
the correlation of x and y
b0
the intercept of the linear regression
b1
the slope of the linear regression
r2
the coefficient of determination of the linear regression