The function applies a Markov chain Monte Carlo (MCMC) algorithm to sample the posterior of an exDQLM.
exdqlmMCMC(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = FALSE,
sig.init = NA,
dqlm.ind = FALSE,
Sig.mh,
joint.sample = FALSE,
n.burn = 2000,
n.mcmc = 1500,
init.from.isvb = TRUE,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)
A list of the following is returned:
run.time
- Algorithm run time in seconds.
model
- List of the state-space model including GG
, FF
, prior parameters m0
and C0
.
p0
- The quantile which was estimated.
df
- Discount factors used for each block.
dim.df
- Dimension used for each block of discount factors.
samp.theta
- Posterior sample of the state vector.
samp.post.pred
- Sample of the posterior predictive distributions.
map.standard.forecast.errors
- MAP standardized one-step-ahead forecast errors.
samp.sigma
- Posterior sample of scale parameter sigma.
samp.vts
- Posterior sample of latent parameters, v_t.
theta.out
- List containing the distributions of the state vector including filtered distribution parameters (fm
and fC
) and smoothed distribution parameters (sm
and sC
).
If dqlm.ind=FALSE
, the list also contains the following:
samp.gamma
- Posterior sample of skewness parameter gamma.
samp.sts
- Posterior sample of latent parameters, s_t.
init.log.sigma
- Burned samples of log sigma from the random walk MH joint sampling of sigma and gamma.
init.logit.gamma
- Burned samples of logit gamma from the random walk MH joint sampling of sigma and gamma.
accept.rate
- Acceptance rate of the MH step.
Sig.mh
- Covariance matrix used in MH step to jointly sample sigma and gamma.
A univariate time-series.
The quantile of interest, a value between 0 and 1.
List of the state-space model including GG
, FF
, prior parameters m0
and C0
.
Discount factors for each block.
Dimension of each block of discount factors.
Logical value indicating whether to fix gamma at gam.init
. Default is FALSE
.
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if fix.gamma=TRUE
.
Logical value indicating whether to fix sigma at sig.init
. Default is TRUE
.
Initial value for sigma (scale parameter), or value at which sigma will be fixed if fix.sigma=TRUE
.
Logical value indicating whether to fix gamma at 0
, reducing the exDQLM to the special case of the DQLM. Default is FALSE
.
Covariance matrix used in the random walk MH step to jointly sample sigma and gamma.
Logical value indicating whether or not to recompute Sig.mh
based off the initial burn-in samples of gamma and sigma. Default is FALSE
.
Number of MCMC iterations to burn. Default is n.burn = 2000
.
Number of MCMC iterations to sample. Default is n.mcmc = 1500
.
Logical value indicating whether or not to initialize the MCMC using the ISVB algorithm. Default is TRUE
.
List of parameters for inverse gamma prior on sigma; shape a_sig
and scale b_sig
. Default is an inverse gamma with mean 1 (or sig.init
if provided) and variance 10.
List of parameters for truncated student-t prior on gamma; center m_gam
, scale s_gam
and degrees of freedom df_gam
. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma.
Logical value indicating whether progress should be displayed.
# \donttest{
y = scIVTmag[1:100]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M2 = exdqlmMCMC(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,
n.burn=100,n.mcmc=150)
# }
Run the code above in your browser using DataLab