The function applies a Markov chain Monte Carlo (MCMC) algorithm to sample the posterior of an exDQLM.
exdqlmMCMC(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = FALSE,
sig.init = NA,
dqlm.ind = FALSE,
Sig.mh,
joint.sample = FALSE,
n.burn = 2000,
n.mcmc = 1500,
init.from.isvb = TRUE,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)A list of the following is returned:
`run.time` - Algorithm run time in seconds.
`model` - List of the state-space model including `GG`, `FF`, prior parameters `m0` and `C0`.
`p0` - The quantile which was estimated.
`df` - Discount factors used for each block.
`dim.df` - Dimension used for each block of discount factors.
`samp.theta` - Posterior sample of the state vector.
`samp.post.pred` - Sample of the posterior predictive distributions.
`map.standard.forecast.errors` - MAP standardized one-step-ahead forecast errors.
`samp.sigma` - Posterior sample of scale parameter sigma.
`samp.vts` - Posterior sample of latent parameters, v_t.
`theta.out` - List containing the distributions of the state vector including filtered distribution parameters (`fm` and `fC`) and smoothed distribution parameters (`sm` and `sC`).
If `dqlm.ind=FALSE`, the list also contains the following:
`samp.gamma` - Posterior sample of skewness parameter gamma.
`samp.sts` - Posterior sample of latent parameters, s_t.
`init.log.sigma` - Burned samples of log sigma from the random walk MH joint sampling of sigma and gamma.
`init.logit.gamma` - Burned samples of logit gamma from the random walk MH joint sampling of sigma and gamma.
`accept.rate` - Acceptance rate of the MH step.
`Sig.mh` - Covariance matrix used in MH step to jointly sample sigma and gamma.
A univariate time-series.
The quantile of interest, a value between 0 and 1.
List of the state-space model including `GG`, `FF`, prior parameters `m0` and `C0`.
Discount factors for each block.
Dimension of each block of discount factors.
Logical value indicating whether to fix gamma at `gam.init`. Default is `FALSE`.
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if `fix.gamma=TRUE`.
Logical value indicating whether to fix sigma at `sig.init`. Default is `TRUE`.
Initial value for sigma (scale parameter), or value at which sigma will be fixed if `fix.sigma=TRUE`.
Logical value indicating whether to fix gamma at `0`, reducing the exDQLM to the special case of the DQLM. Default is `FALSE`.
Covariance matrix used in the random walk MH step to jointly sample sigma and gamma.
Logical value indicating whether or not to recompute `Sig.mh` based off the initial burn-in samples of gamma and sigma. Default is `FALSE`.
Number of MCMC iterations to burn. Default is `n.burn = 2000`.
Number of MCMC iterations to sample. Default is `n.mcmc = 1500`.
Logical value indicating whether or not to initialize the MCMC using the ISVB algorithm. Default is `TRUE`.
List of parameters for inverse gamma prior on sigma; shape `a_sig` and scale `b_sig`. Default is an inverse gamma with mean 1 (or `sig.init` if provided) and variance 10.
List of parameters for truncated student-t prior on gamma; center `m_gam`, scale `s_gam` and degrees of freedom `df_gam`. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma.
Logical value indicating whether progress should be displayed.
# \donttest{
y = scIVTmag[1:100]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M2 = exdqlmMCMC(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,
n.burn=100,n.mcmc=150)
# }
Run the code above in your browser using DataLab