Learn R Programming

experDesign (version 0.4.0)

evaluate_entropy: Evaluate entropy

Description

Looks if the nominal or character columns are equally distributed according to the entropy and taking into account the independence between batches. If any column is different in each row it is assumed to be the sample names and thus omitted.

Usage

evaluate_entropy(i, pheno)

Value

Value to minimize

Arguments

i

list of numeric indices of the data.frame

pheno

Data.frame with information about the samples

See Also

Other functions to evaluate samples: evaluate_independence(), evaluate_index(), evaluate_mad(), evaluate_mean(), evaluate_na(), evaluate_orig(), evaluate_sd()

Other functions to evaluate categories: evaluate_independence(), evaluate_na()

Examples

Run this code
data(survey, package = "MASS")
index <- design(survey[, c("Sex", "Smoke", "Age")], size_subset = 50,
                iterations = 10)
# Note that numeric columns will be omitted:
evaluate_entropy(index, survey[, c("Sex", "Smoke", "Age")])

Run the code above in your browser using DataLab