# \donttest{
library("explainer")
seed <- 246
set.seed(seed)
# Load necessary packages
if (!requireNamespace("mlbench", quietly = TRUE)) stop("mlbench not installed.")
if (!requireNamespace("mlr3learners", quietly = TRUE)) stop("mlr3learners not installed.")
if (!requireNamespace("ranger", quietly = TRUE)) stop("ranger not installed.")
# Load BreastCancer dataset
utils::data("BreastCancer", package = "mlbench")
target_col <- "Class"
positive_class <- "malignant"
mydata <- BreastCancer[, -1]
mydata <- na.omit(mydata)
sex <- sample(c("Male", "Female"), size = nrow(mydata), replace = TRUE)
mydata$age <- as.numeric(sample(seq(18, 60), size = nrow(mydata), replace = TRUE))
mydata$sex <- factor(sex, levels = c("Male", "Female"), labels = c(1, 0))
maintask <- mlr3::TaskClassif$new(
id = "my_classification_task",
backend = mydata,
target = target_col,
positive = positive_class
)
splits <- mlr3::partition(maintask)
mylrn <- mlr3::lrn("classif.ranger", predict_type = "prob")
mylrn$train(maintask, splits$train)
SHAP_output <- eSHAP_plot(
task = maintask,
trained_model = mylrn,
splits = splits,
sample.size = 2, # also 30 or more
seed = seed,
subset = 0.02 # up to 1
)
# }
Run the code above in your browser using DataLab