Learn R Programming

explainer (version 1.0.2)

regressmdl_eval: Regression Model Evaluation

Description

Provides calculations of measures to evaluate regression models.

Usage

regressmdl_eval(task, trained_model, splits)

Value

Data frame containing regression evaluation measures

Arguments

task

mlr3 regression task object

trained_model

mlr3 trained learner (model) object

splits

mlr3 object defining data splits for train and test sets

References

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L, Bischl B. mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source Software. 2019 Dec 11;4(44):1903.

See Also

eCM_plot()

Examples

Run this code
library("explainer")
seed <- 246
set.seed(seed)
# Load necessary packages
if (!requireNamespace("mlbench", quietly = TRUE)) stop("mlbench not installed.")
if (!requireNamespace("mlr3learners", quietly = TRUE)) stop("mlr3learners not installed.")
if (!requireNamespace("ranger", quietly = TRUE)) stop("ranger not installed.")
# Load BreastCancer dataset
utils::data("BreastCancer", package = "mlbench")
mydata <- BreastCancer[, -1]
mydata <- na.omit(mydata)
sex <- sample(
  c("Male", "Female"),
  size = nrow(mydata),
  replace = TRUE
)
mydata$age <- sample(
  seq(18, 60),
  size = nrow(mydata),
  replace = TRUE
)
mydata$sex <- factor(
  sex,
  levels = c("Male", "Female"),
  labels = c(1, 0)
)
mydata$Class <- NULL
mydata$Cl.thickness <- as.numeric(mydata$Cl.thickness)
target_col <- "Cl.thickness"
maintask <- mlr3::TaskRegr$new(
  id = "my_regression_task",
  backend = mydata,
  target = target_col
)
splits <- mlr3::partition(maintask)
mylrn <- mlr3::lrn(
  "regr.ranger",
  predict_type = "response"
)
mylrn$train(maintask, splits$train)
regressmdl_eval_results <- regressmdl_eval(
  task = maintask,
  trained_model = mylrn,
  splits = splits
)

Run the code above in your browser using DataLab