Learn R Programming

Quick start

Welcome to the exprso GitHub page! Let's get started.

library(devtools)
devtools::install_github("tpq/exprso")
library(exprso)

Importing data

To import data, we use the exprso function. This function has two arguments.

data(iris)
array <- exprso(iris[1:80, 1:4], iris[1:80, 5])
## [1] "Preparing data for binary classification."

Pre-processing data

Functions with a mod prefix pre-process the data.

array <- modTransform(array)
array <- modNormalize(array, c(1, 2))

Split data

Functions with a split prefix split the data into training and test sets.

arrays <- splitSample(array, percent.include = 67)
array.train <- arrays$array.train
array.test <- arrays$array.valid

Select features

Functions with a fs prefix select features.

array.train <- fsStats(array.train, top = 0, how = "t.test")

Build models

Functions with a build prefix build models.

mach <- buildSVM(array.train,
                 top = 50,
                 kernel = "linear",
                 cost = 1)
## Setting probability to TRUE (forced behavior, cannot override)...
## Setting cross to 0 (forced behavior, cannot override)...
pred <- predict(mach, array.train)
## Individual classifier performance:
## Arguments not provided in an ROCR AUC format. Calculating accuracy outside of ROCR...
## Classification confusion table:
##          actual
## predicted Control Case
##   Control      29    0
##   Case          0   25
##   acc sens spec
## 1   1    1    1
pred <- predict(mach, array.test)
## Individual classifier performance:
## Arguments not provided in an ROCR AUC format. Calculating accuracy outside of ROCR...
## Classification confusion table:
##          actual
## predicted Control Case
##   Control      21    0
##   Case          0    5
##   acc sens spec
## 1   1    1    1
calcStats(pred)

Deploy pipelines

Functions with a pl prefix deploy high-throughput learning pipelines.

pl <- plGrid(array.train,
             array.test,
             how = "buildSVM",
             top = c(2, 4),
             kernel = "linear",
             cost = 10^(-3:3),
             fold = NULL)
pl
## Accuracy summary (complete summary stored in @summary slot):
## 
##      build top kernel  cost train.acc train.sens train.spec train.auc
## 1 buildSVM   2 linear 0.001  0.537037          0          1         0
## 2 buildSVM   4 linear 0.001  0.537037          0          1         0
## 3 buildSVM   2 linear 0.010  1.000000          1          1         1
## 4 buildSVM   4 linear 0.010  1.000000          1          1         1
##   valid.acc valid.sens valid.spec valid.auc
## 1 0.8076923          0          1         0
## 2 0.8076923          0          1         0
## 3 1.0000000          1          1         1
## 4 1.0000000          1          1         1
## ...
##       build top kernel cost train.acc train.sens train.spec train.auc
## 11 buildSVM   2 linear  100         1          1          1         1
## 12 buildSVM   4 linear  100         1          1          1         1
## 13 buildSVM   2 linear 1000         1          1          1         1
## 14 buildSVM   4 linear 1000         1          1          1         1
##    valid.acc valid.sens valid.spec valid.auc
## 11         1          1          1         1
## 12         1          1          1         1
## 13         1          1          1         1
## 14         1          1          1         1
## 
## Machine summary (all machines stored in @machs slot):
## 
## ##Number of classes: 2 
## @preFilter summary: 4 2 
## @reductionModel summary: logical logical 
## @mach class: svm.formula svm 
## ...
## ##Number of classes: 2 
## @preFilter summary: 4 4 
## @reductionModel summary: logical logical 
## @mach class: svm.formula svm

Read the exprso vignettes for more details.

Copy Link

Version

Install

install.packages('exprso')

Monthly Downloads

39

Version

0.5.1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Thomas Quinn

Last Published

March 23rd, 2019

Functions in exprso (0.5.1)

ExprsBinary-class

An S4 class to store feature and annotation data
RegrsModel-class

An S4 class to store the model
ExprsMulti-class

An S4 class to store feature and annotation data
ExprsPipeline-class

An S4 class to store models built during high-throughput learning
buildSVM

Build Support Vector Machine Model
calcMonteCarlo

Calculate plMonteCarlo Performance
buildANN

Build Artificial Neural Network Model
buildDNN

Build Deep Neural Network Model
ExprsPredict-class

An S4 class to store model predictions
buildDT

Build Decision Tree Model
buildEnsemble

Build Ensemble
defaultArg

Set an args List Element to Default Value
buildNB

Build Naive Bayes Model
GSE2eSet

Convert GSE to eSet
compare

Compare ExprsArray Objects
buildRF

Build Random Forest Model
conjoin

Combine exprso Objects
ctrlModSet

Manage mod Arguments
check.ctrlGS

Check ctrlGS Arguments
ExprsModel-class

An S4 class to store the model
classCheck

Class Check
fs

Select Features
doMulti

Perform Multiple "1 vs. all" Tasks
ExprsEnsemble-class

An S4 class to store multiple models
ExprsMachine-class

An S4 class to store the model
build.

Workhorse for build Methods
build

Build Models
ctrlSplitSet

Manage split Arguments
fsInclude

Select Features by Explicit Reference
ExprsModule-class

An S4 class to store the model
RegrsPredict-class

An S4 class to store model predictions
buildFRB

Build Fuzzy Rule Based Model
fsBalance

Convert Features into Balances
fsMrmre

Select Features by mRMR
fsANOVA

Select Features by ANOVA
getFeatures

Retrieve Feature Set
fsEbayes

Select Features by Moderated t-test
fsEdger

Selects Features by Exact Test
makeGridFromArgs

Build Argument Grid
fsCor

Select Features by Correlation
mod

Process Data
array

Sample ExprsBinary Data
buildGLM

Build Generalized Linear Model
modAcomp

Compositionally Constrain Data
modRatios

Recast Data as Feature (Log-)Ratios
getWeights

Retrieve LASSO Weights
buildLM

Build Linear Model
modCLR

Log-ratio Transform Data
modScale

Scale Data by Factor Range
arrayExprs

Import Data as ExprsArray
modSkew

Skew Data by Factor Range
calcNested

Calculate plNested Performance
packageCheck

Package Check
pipe

Process Pipelines
buildLR

Build Logistic Regression Model
modNormalize

Normalize Data
ctrlFeatureSelect

Manage fs Arguments
arrayMulti

Sample ExprsMulti Data
modSample

Sample Features from Data
buildLASSO

Build LASSO or Ridge Model
buildLDA

Build Linear Discriminant Analysis Model
ctrlGridSearch

Manage plGrid Arguments
calcStats

Calculate Model Performance
modPermute

Permute Features in Data
modSubset

Tidy Subset Wrapper
exprso-predict

Deploy Model
fsStats

Select Features by Statistical Testing
nfeats

Get Number of Features
modSwap

Swap Case Subjects
forceArg

Force an args List Element to Value
nsamps

Get Number of Samples
plGrid

Perform High-Throughput Machine Learning
exprso

The exprso Package
plGridMulti

Perform High-Throughput Multi-Class Classification
split

Split Data
fs.

Workhorse for fs Methods
getArgs

Build an args List
fsPrcomp

Reduce Dimensions by PCA
splitBalanced

Split by Balanced Sampling
modCluster

Cluster Subjects
splitBoost

Sample by Boosting
trainingSet

Extract Training Set
fsRDA

Reduce Dimensions by RDA
splitBy

Split by User-defined Group
modFilter

Hard Filter Data
pipeFilter

Filter ExprsPipeline Object
pipeUnboot

Rename "boot" Column
validationSet

Extract Validation Set
fsNULL

Null Feature Selection
modHistory

Replicate Data Process History
plMonteCarlo

Monte Carlo Cross-Validation
fsPCA

Reduce Dimensions by PCA
plNested

Nested Cross-Validation
modInclude

Select Features from Data
fsRankProd

Select Features by Rank Product Analysis
fsSample

Select Features by Random Sampling
splitSample

Split by Random Sampling
progress

Make Progress Bar
modTMM

Normalize Data
modTransform

Log Transform Data
pl

Deploy Pipeline
plCV

Perform Simple Cross-Validation
splitStratify

Split by Stratified Sampling
reRank

Serialize "1 vs. all" Feature Selection
ExprsArray-class

An S4 class to store feature and annotation data
RegrsArray-class

An S4 class to store feature and annotation data