```
# NOT RUN {
data(mtcars)
mtcars = apply_labels(mtcars,
mpg = "Miles/(US) gallon",
cyl = "Number of cylinders",
disp = "Displacement (cu.in.)",
hp = "Gross horsepower",
drat = "Rear axle ratio",
wt = "Weight (1000 lbs)",
qsec = "1/4 mile time",
vs = "Engine",
vs = c("V-engine" = 0,
"Straight engine" = 1),
am = "Transmission",
am = c("Automatic" = 0,
"Manual"=1),
gear = "Number of forward gears",
carb = "Number of carburetors"
)
calculate(mtcars, cro(am, vs))
calc_cro(mtcars, am, vs) # the same result
# column percent with multiple banners
calculate(mtcars, cro_cpct(cyl, list(total(), vs, am)))
calc_cro_cpct(mtcars, cyl, list(total(), vs, am)) # the same result
# nested banner
calculate(mtcars, cro_cpct(cyl, list(total(), vs %nest% am)))
# stacked variables
calculate(mtcars, cro(list(cyl, carb), list(total(), vs %nest% am)))
# nested variables
calculate(mtcars, cro_cpct(am %nest% cyl, list(total(), vs)))
# row variables
calculate(mtcars, cro_cpct(cyl, list(total(), vs), row_vars = am))
# several totals above table
calculate(mtcars, cro_cpct(cyl,
list(total(), vs),
row_vars = am,
total_row_position = "above",
total_label = c("number of cases", "row %"),
total_statistic = c("u_cases", "u_rpct")
))
# multiple-choice variable
# brands - multiple response question
# Which brands do you use during last three months?
set.seed(123)
brands = data.frame(t(replicate(20,sample(c(1:5,NA),4,replace = FALSE))))
# score - evaluation of tested product
score = sample(-1:1,20,replace = TRUE)
var_lab(brands) = "Used brands"
val_lab(brands) = make_labels("
1 Brand A
2 Brand B
3 Brand C
4 Brand D
5 Brand E
")
var_lab(score) = "Evaluation of tested brand"
val_lab(score) = num_lab("
-1 Dislike it
0 So-so
1 Like it
")
cro_cpct(mrset(brands), list(total(), score))
# responses
cro_cpct_responses(mrset(brands), list(total(), score))
# }
```

Run the code above in your browser using DataCamp Workspace