
Last chance! 50% off unlimited learning
Sale ends in
Density, distribution function, and random generation for the shifted Gompertz distribution.
dsgomp(x, b, eta, log = FALSE)psgomp(q, b, eta, lower.tail = TRUE, log.p = FALSE)
rsgomp(n, b, eta)
vector of quantiles.
positive valued scale and shape parameters; both need to be positive.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are
number of observations. If length(n) > 1
,
the length is taken to be the number required.
If rsgomp
function for random generation from
shifted Gompertz distribution.
Probability density function
Cumulative distribution function
Bemmaor, A.C. (1994). Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity. [In:] G. Laurent, G.L. Lilien & B. Pras. Research Traditions in Marketing. Boston: Kluwer Academic Publishers. pp. 201-223.
Jimenez, T.F. and Jodra, P. (2009). A Note on the Moments and Computer Generation of the Shifted Gompertz Distribution. Communications in Statistics - Theory and Methods, 38(1), 78-89.
Jimenez T.F. (2014). Estimation of the Parameters of the Shifted Gompertz Distribution, Using Least Squares, Maximum Likelihood and Moments Methods. Journal of Computational and Applied Mathematics, 255(1), 867-877.
# NOT RUN {
x <- rsgomp(1e5, 0.4, 1)
hist(x, 50, freq = FALSE)
curve(dsgomp(x, 0.4, 1), 0, 30, col = "red", add = TRUE)
hist(psgomp(x, 0.4, 1))
plot(ecdf(x))
curve(psgomp(x, 0.4, 1), 0, 30, col = "red", lwd = 2, add = TRUE)
# }
Run the code above in your browser using DataLab