Dirichlet

0th

Percentile

Dirichlet distribution

Density function, cumulative distribution function and random generation for the Dirichlet distribution.

Keywords
distribution
Usage
ddirichlet(x, alpha, log = FALSE)

rdirichlet(n, alpha)

Arguments
x

\(k\)-column matrix of quantiles.

alpha

\(k\)-values vector or \(k\)-column matrix; concentration parameter. Must be positive.

log

logical; if TRUE, probabilities p are given as log(p).

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability density function $$ f(x) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k x_k^{k-1} $$

References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

Aliases
  • Dirichlet
  • ddirichlet
  • rdirichlet
Examples
# NOT RUN {
# Generating 10 random draws from Dirichlet distribution
# parametrized using a vector

rdirichlet(10, c(1, 1, 1, 1))

# or parametrized using a matrix where each row
# is a vector of parameters

alpha <- matrix(c(1, 1, 1, 1:3, 7:9), ncol = 3, byrow = TRUE)
rdirichlet(10, alpha)

# }
Documentation reproduced from package extraDistr, version 1.8.11, License: GPL-2

Community examples

Looks like there are no examples yet.