MultiHypergeometric

0th

Percentile

Multivariate hypergeometric distribution

Probability mass function and random generation for the multivariate hypergeometric distribution.

Keywords
distribution
Usage
dmvhyper(x, n, k, log = FALSE)

rmvhyper(nn, n, k)

Arguments
x

\(m\)-column matrix of quantiles.

n

\(m\)-length vector or \(m\)-column matrix of numbers of balls in \(m\) colors.

k

the number of balls drawn from the urn.

log

logical; if TRUE, probabilities p are given as log(p).

nn

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability mass function $$ f(x) = \frac{\prod_{i=1}^m {n_i \choose x_i}}{{N \choose k}} $$

The multivariate hypergeometric distribution is generalization of hypergeometric distribution. It is used for sampling without replacement \(k\) out of \(N\) marbles in \(m\) colors, where each of the colors appears \(n_i\) times. Where \(k=\sum_{i=1}^m x_i\), \(N=\sum_{i=1}^m n_i\) and \(k \le N\).

References

Gentle, J.E. (2006). Random number generation and Monte Carlo methods. Springer.

See Also

Hypergeometric

Aliases
  • MultiHypergeometric
  • dmvhyper
  • rmvhyper
Examples
# NOT RUN {
# Generating 10 random draws from multivariate hypergeometric
# distribution parametrized using a vector

rmvhyper(10, c(10, 12, 5, 8, 11), 33)

# }
Documentation reproduced from package extraDistr, version 1.8.11, License: GPL-2

Community examples

Looks like there are no examples yet.