Learn R Programming

extracat (version 1.6-3)

BCI: The Bertin Classification Index

Description

Computes the Bertin Classification Index for a contingency table of any dimensions.

Usage

BCI(x)

Arguments

x
A data matrix, table or array.

Value

  • The criterion value.

Details

The BCI is the Bertin Classification Criterion (BCC) normalized by the BCC value under independence.

See Also

kendalls

Examples

Run this code
#for an unoptimized matrix we take the minimum of BCI(M) and BCI(M[,12:1])
M <-arsim(1000, c(12,12), 3)
min(BCI(M), BCI(M[,12:1]))

#an strongly related alternative (for two-way data)
kendalls(M)

M2 <- optile(M, iter = 100)
BCI(M2)
kendalls(M2)

M3 <-arsim(100000, c(12,13,15), 4,noise=0.2,shuffle=FALSE)
BCI(M3)

Run the code above in your browser using DataLab