fitFunctions: Fit model distributions
Description
Fit model distribution to a set of observations.Usage
fitLognormal(y, p)
fitPareto(y, p)
fitExponential(y,p)
fitWeibull(y,p)
fitNormal(y,p)
Arguments
y
Vector of one-dimensional nonnegative data
p
Corresponding quantile values
Value
- R2R-squared value for the fit
- lamda(exponential only) Estimated location (and spread) parameter for $f(y)=\lambda*exp(-\lambda * y)$
- mu(lognormal only) Estimated ${\sf E}(\ln(y))$ for lognormal distribution
- sigma(lognormal only) Estimated Var(ln(y)) for lognormal distribution
- ym(pareto only) Estimated location parameter (mode) for pareto distribution
- alpha(pareto only) Estimated spread parameter for pareto distribution
- k(weibull only) estimated power parameter $k$ for weibull distribution
- lambda(weibull only) estimated scaling parameter $\lambda$ for weibull distribution
Details
The function sorts the values of y and uses (log)linear regression to fit
the values between the pmin and pmax quantile to the cdf
of a model distribution.References
An outlier detection method for economic data, M.P.J. van der
Loo, Submitted to The Journal of Official Statistics (November 2009)Examples
Run this codey = 10^rnorm(50);
L <- getOutliers(y,rho=0.5);
Run the code above in your browser using DataLab