Determine outlier limit. These functions are called by the
wrapperfunction getOutlierLimit
Usage
getExponentialLimit(y, p, N, rho)
getLognormalLimit(y, p, N, rho)
getParetoLimit(y, p, N, rho)
getWeibullLimit(y, p, N, rho)
getNormalLimit(y, p, N, rho)
Arguments
y
Vector of one-dimensional nonnegative data
p
Corresponding quantile values
N
Number of observations
rho
Limiting expexted value
Value
limitThe y-value above which less then rho observations are expected
R2R-squared value for the fit
nFitNumber of values used in fit (length(y))
lamda(exponential only) Estimated location (and spread) parameter for $f(y)=\lambda\exp(-\lambda y)$
mu(lognormal only) Estimated ${\sf E}(\ln(y))$ for lognormal distribution
sigma(lognormal only) Estimated Var(ln(y)) for lognormal distribution
ym(pareto only) Estimated location parameter (mode) for pareto distribution
alpha(pareto only) Estimated spread parameter for pareto distribution
k(weibull only) estimated power parameter $k$ for weibull distribution
lambda(weibull only) estimated scaling parameter $\lambda$ for weibull distribution
Details
The functions fit a model cdf to the observed y and p and returns the
y-value above which less than rho values are expected, given N observations.
See getOutlierLimit for a complete explanation.
The function returns a list with the following entries:
References
An outlier detection method for economic data, M.P.J. van der
Loo, Submitted to The Journal of Official Statistics (November 2009)