Learn R Programming

extremevalues (version 2.1)

fitFunctions: Fit model distributions

Description

Fit model distribution to a set of observations.

Usage

fitNormal(y, p)
fitLognormal(y, p)
fitPareto(y, p)
fitExponential(y, p)
fitWeibull(y, p)

Arguments

y
Vector of one-dimensional nonnegative data
p
Corresponding quantile values

Value

  • R2R-squared value for the fit
  • lamda(exponential only) Estimated location (and spread) parameter for $f(y)=\lambda*exp(-\lambda * y)$
  • mu(lognormal only) Estimated ${\sf E}(\ln(y))$ for lognormal distribution
  • sigma(lognormal only) Estimated Var(ln(y)) for lognormal distribution
  • ym(pareto only) Estimated location parameter (mode) for pareto distribution
  • alpha(pareto only) Estimated spread parameter for pareto distribution
  • k(weibull only) estimated power parameter $k$ for weibull distribution
  • lambda(weibull only) estimated scaling parameter $\lambda$ for weibull distribution

Details

The function sorts the values of y and uses (log)linear regression to fit the values between the pmin and pmax quantile to the cdf of a model distribution.

References

M.P.J. van der Loo, Distribution based outlier detection for univariate data. Discussion paper 10003, Statistics Netherlands, The Hague (2010). Available from www.markvanderloo.eu or www.cbs.nl.

Examples

Run this code
y = 10^rnorm(50);
L <- getOutliers(y,rho=0.5);

Run the code above in your browser using DataLab