
Last chance! 50% off unlimited learning
Sale ends in
This function computes a kernel scedasis density estimate.
cdensity(Y, threshold = quantile(Y[, 2], 0.95), ...)
scedasis density estimator.
number of exceedances above the threshold.
standardized indices of exceedances.
raw data.
The plot
method depicts the smooth scedasis density.
data frame from which the estimate is to be computed; first column corresponds to time and the second to the variable of interest.
value used to threshold the data y
; by default
threshold = quantile(y, 0.95)
.
further arguments for density
methods.
Miguel de Carvalho
Kernel smoothing for the scedasis density was introduced by Einmahl et al (2016).
Einmahl, J. H., Haan, L., and Zhou, C. (2016) Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society: Ser. B, 78(1), 31--51.
data(lse)
attach(lse)
Y <- data.frame(DATE[-1], -diff(log(ROYAL.DUTCH.SHELL.B)))
T <- dim(Y)[1]
k <- floor((0.4258597) * T / (log(T)))
fit <- cdensity(Y, kernel = "biweight", bw = 0.1 / sqrt(7),
threshold = sort(Y[, 2])[T - k])
plot(fit)
plot(fit, original = FALSE)
Run the code above in your browser using DataLab